【NOI2011】道路修建
Description
在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家
之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路。 每条道路的修建都要付出一定的费用, 这个费用等于道路长度乘以道路两端的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 2 个、4个国家,如果该道路长度为 1,则费用为1×|2 – 4|=2。图中圆圈里的数字表示国家的编号。 由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计算出所需要的费用。请你帮助国王们设计一个这样的软件。Input
输入的第一行包含一个整数n,表示 W 星球上的国家的数量,国家从 1到n
编号。接下来 n – 1行描述道路建设情况,其中第 i 行包含三个整数ai、bi和ci,表示第i 条双向道路修建在 ai与bi两个国家之间,长度为ci。Output
输出一个整数,表示修建所有道路所需要的总费用。
Sample Input
61 2 11 3 11 4 26 3 15 2 1
Sample Output
20
HINT
n = 1,000,000 1≤ai, bi≤n
0 ≤ci≤ 10^6题解:直接扫一遍就行了,注意用dfs会爆栈,所以要用bfs,记录一下bfs序即可。
#include#include #include using namespace std;const int maxn=1000010;typedef long long ll;int n,cnt;int q[maxn],h,t;int to[maxn<<1],next[maxn<<1],val[maxn<<1],head[maxn],fa[maxn],size[maxn];ll ans,v[maxn<<1];int readin(){ int ret=0; char gc; while(gc<'0'||gc>'9') gc=getchar(); while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar(); return ret;}ll z(ll x){ return x>0?x:-x;}void add(int a,int b,int c){ to[cnt]=b; val[cnt]=c; next[cnt]=head[a]; head[a]=cnt++;}int main(){ n=readin(); memset(head,-1,sizeof(head)); int i,j,a,b,c,u; for(i=1;i =2;i--) { size[fa[q[i]]]+=size[q[i]]; ans+=v[q[i]]*(z((long long)size[q[i]]*2-n)); } printf("%lld",ans); return 0;}